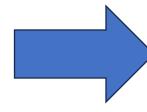
## Threat modeling workshop

Practice session hangouts

Sirris - SecDes

#### Contents


- Part 1 theory WHY? And WHAT is IT?
- Part 2 Practice CONTEXT
- Part 3 Practice COMPONENT

Part 1: why to do it??

## Design and secure design

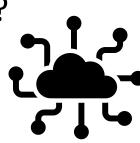
- Specify requirements
- Implement features
- Build software people will use

- Specify SECURE requirements
- Implement SECURITY features
- Build software people will use



AND anticipate when something goes wrong

## Examples


How to secure data on prem?



in the cloud?



How to secure sensors in customer premises?



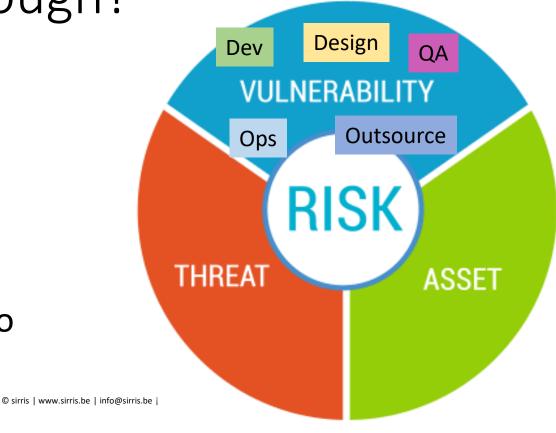
### Secure design

Thread modeling helps us to focus on these questions and answers



Ed Moyle (2017):

"Very few organizations will have the time or resources to **threat model** their entire ecosystem.

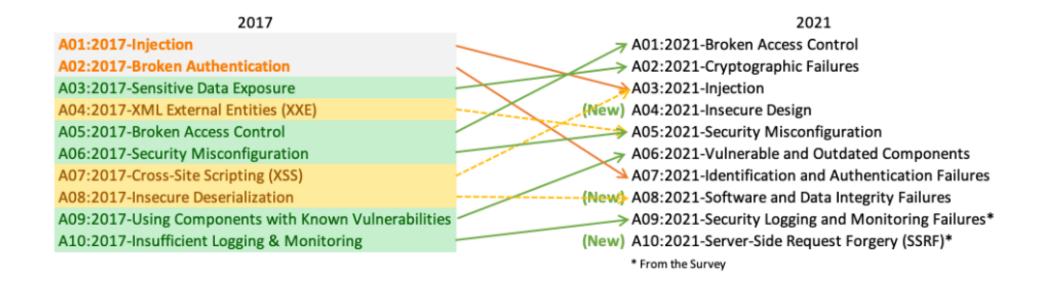

Assuming you do not have that luxury, you still can realize quite a bit of **value** just by adopting the mindset of looking for blind spots and questioning assumptions." \*

https://www.ecommercetimes.com/story/Invisible-Technologies-What-You- Cant-See-Can-Hurt-You-84852.html

"Threat modeling is analyzing representations of a system to highlight concerns about security and privacy characteristics."

How to be secure enough?

- Threat potential to harm
- Vulnerability weakness that can be used to harm
- Attack, vector, surface threat realization scenario
- Likelibility Chance for threat to happen
- Asset what can be damaged
- Risk how much you loose when this happens




Know what and how protect!

25/09/2025

## How often do things go wrong?

• <a href="https://owasp.org/www-project-top-ten/">https://owasp.org/www-project-top-ten/</a> (TBD in 2025)



What do you already do for security of your software?

• ....

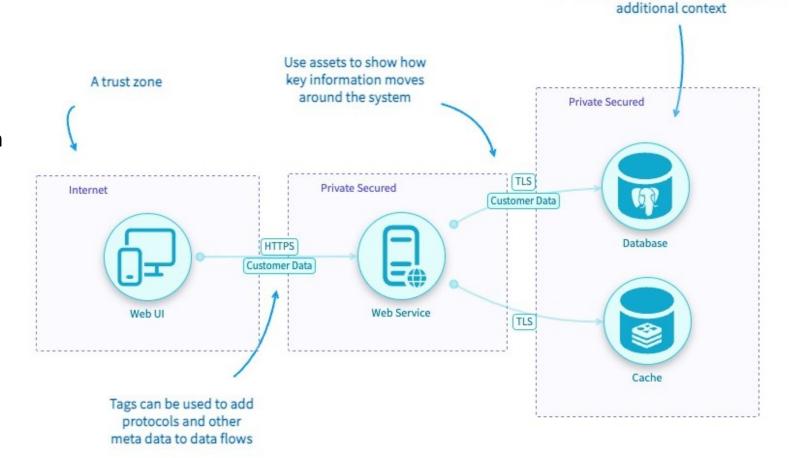
## ...if you do not do threat modeling — you miss a lot!





Think ahead

What if?


Weight the risks

Act accordingly

#### Threat modeling

 Process of understanding your system and potential threats against your system or Critical Security Thinking

"Threat modeling is analyzing representations of a system to highlight concerns about security and privacy characteristics."

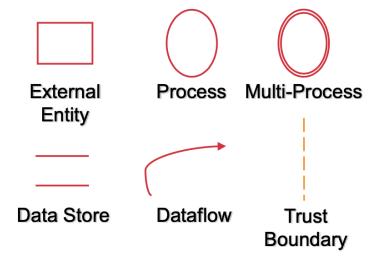


Check out the component questionnaires (right click the component) and see how they provide

## Part 2: Context

Understand your system

#### DICE model


- Understand the system and what stakeholders expect from it.
- Apply known successful attacks to points on a system where attackers can reach
- Rate the risk for each attack scenario
- Identify appropriate defenses or mitigations



## Context: do you understand your system?

- Define the scope of TM
- Make sure <u>everyone</u> understands context, outcomes, how system works
- Know who works with or has access to software
- Common understanding of what is considered important (CIA-triade)
- Use data, sequence, state diagrams
- Identify attack surface
- Foundation of TM

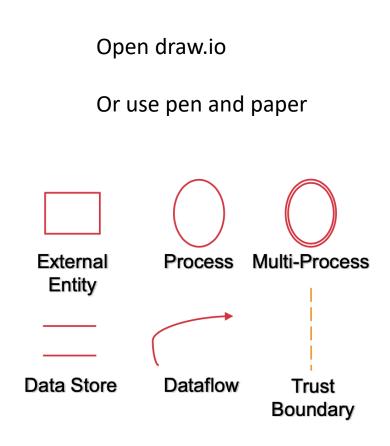
## Data flow diagrams (DFD)



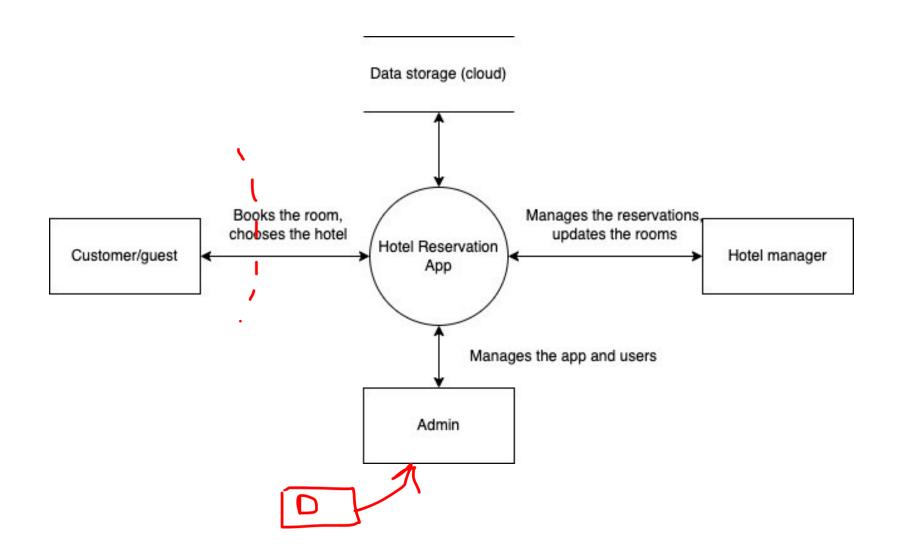
- External entity: person or system interaction with application via an entry point (not in control)
- Process: tasks handling data within application (in control)
- Data store: locations where data is stored (not modified, i.e. DB)
- Data flow: Data movement within application, arrows
- Trust boundary: Identify locations where attackers might act, change of trust levels as data moves trhough the application

## Types of DFD

**Context Diagram** 


Level 1 Diagram

Very high level, what interacts with my app? Who interacts with my app?

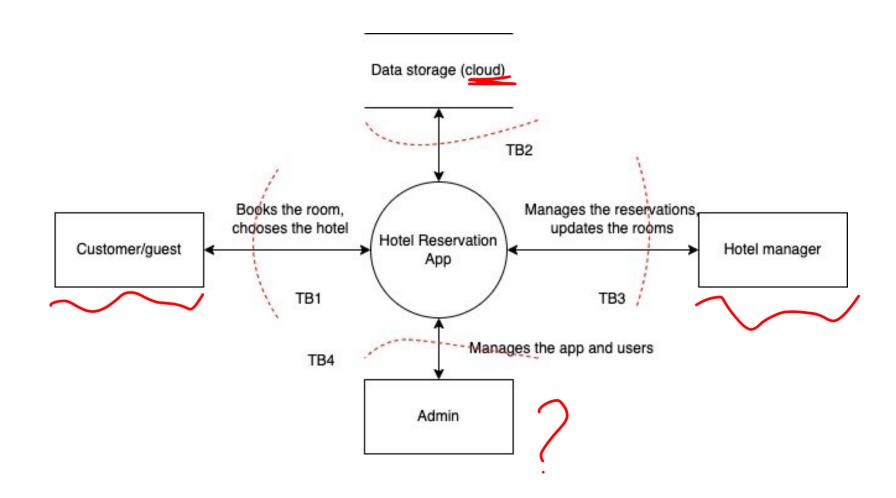

High level,
What are different components of my app?
How does data moves between process?
Where I need to check the level of trust netween the components?

# Let's make a context diagram: hotel management app

- Classic 3-tier web app:
  - Guests login and book
  - Hotels manage and update
  - Admin manage the app
  - App
  - Data store cloud
  - ....



## Is it something like this?




#### Let's find trust boundaries

#### What are trust boundaries?

- Trust boundaries intersect data flows within a diagram
- Show where trust levels change
- Attack surface where an attacker can interject
- Examples: Machine boundaries, privilege boundaries, integrity boundaries
- Processes talking across a network always have a trust boundary

## Is it something like this?



## Priorities: choose 3 highest

| Component   | Definition                                              | Points |
|-------------|---------------------------------------------------------|--------|
| Cloud       | Hosted/operated by a cloud service provider             | +2     |
| Compliance  | Subject to regulatory/compliance                        | +2     |
| Exposed     | Located or crossing a non-trusted boundary area         | +3     |
| НА          | Subject to high availability requirement                | +1     |
| Hostile     | Should be considered as high source of hostility        | +2     |
| Mobile      | Operates on mobile equipment                            | +1     |
| Static      | Component should be considered as-is under this project | -2     |
| Transaction | Initiates queries to a transactional system             | +2     |
| Web         | Operates with HTTP protocol)                            | +1     |
| Trusted     | Trusted and operates in a trusted environment           | -1     |
|             | Tune towards your own environment                       |        |

## What are the top 3?

- 3 questions to each TB:
  - How far can we trust this external entity? What can go wrong?
  - How far can we trust the communication protocol? What can go wrong?
  - How far can we trust our app? What can go wrong?

#### And more...

- Who's interested in app and data (threat agents)?
- What goals (assets)?
   What attack methods (how)?
- Any attack surfaces (trust boundaries) exposed?
- Any input/output (data flows) missing?

## A best question

Is there anything keeping you up at night worrying about this system?

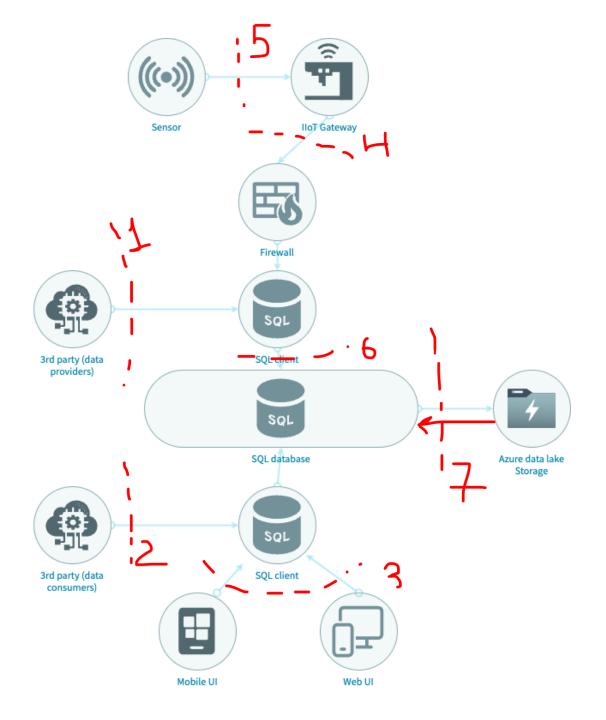
#### Practice

- Draw context Level 0 DFD diagram of your app
- Identify trust boundaries
- Identify the ones with highest priority
- Identify scenario for each untrusted trust boundary that scares you most (doomsday scenario).
  - What if the data of your application shows up on the dark web? (confidentiality)
  - What if your app is offline for a day? (availability)
  - What if data is randomly altered? (integrity)

### Example: HR SaaS app

- App is used by enterprises (250+ employees) to store contracts, organigrams, 360 reviews, ...
- Doomsday scenario's:
  - Data on darkweb (confidentiality): complete fiasco. Personal data of employees, social security numbers, wages. Almost as bad: unauthorized access to data (e.g. non-hr person that can access data of all their peers)
  - Outage (availability): not that bad: application is not mission critical for customers – 36h disaster recovery window
  - Data manipulation (integrity): relatively bad: employees could manipulate their ratings, ... There's not a direct connection between this app and the payroll app, so no immediate financial impact.

## Part 2


Component level (DFD Level 1)
STRIDE

Risk evaluation

### Example

- SmartMeter digital quality management solution provides support to the digitalized quality tracking via IoT infrastructure in customer premises.
- The data (measurements) is collected from the sensors in customer premises and then stored and accessed in the database and in the cloud.
- Data is made available to the customers through the mobile app and web interface. This data is also available to external providers via JSON APIs
- There are two primary components in the system: sensors and backend.
- 2 types of devices are installed on the customer premise :
- Sensors: send measurement data to the gateway
- Gateways: receives measurement data from one or more sensor devices. Packages the data and sends it via unencrypted TCP to the backend. The communication is secured by a firewall.
- The main part of the solution is running at a datacenter. All data is stored on a SQL Database. The backend is also connected to Microsoft Azure. For reporting purposes, data is replicated from the SQL database to a Datalake in Azure.
- All the external links (data providers, cloud, data consumers, mobile app and web interface) go through https.

# DFD Level 1 – find trust boundaries

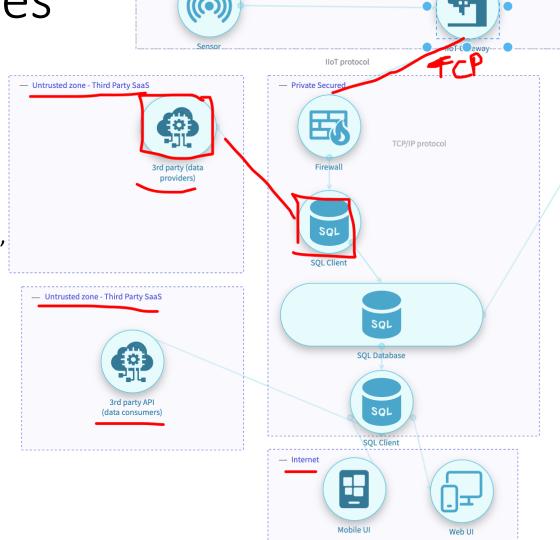


## DFD Level 1 – trust boundaries

Threat1: spoofing of data due to

leaked API credentials

TB: data providers –SQL client


Impact: high impact

Countermeasures: double check,

Surveilance/monitoring, revoke/rotate,

Storage

Component: SQL



Trusted Partner

#### STRIDE ANALYSIS

- Spoofing: Can attacker gain access using a false identity?
- Tampering: Can attacker modify data in the application?
- Repudiation: If attacker denies doing something, can we prove it?
- Information disclosure: Can attacker get access to sensitive data?
- Denial of Service: Can attacker crash or reduce availability of the application?
- Elevation of privilege: Can attacker take identity of a privileged user?

#### STRIDE Framework – Data Flow

| Threat                    | Examples                                     | Property we want   |
|---------------------------|----------------------------------------------|--------------------|
| Spoofing                  | Pretending to be someone else                | Identity Assurance |
| Tampering                 | Modifying data that should not be modifiable | Integrity          |
| Repudiation               | Claiming someone didn't do something         | Non-repudiation    |
| Information<br>Disclosure | Exposing information                         | Confidentiality    |
| Denial of Service         | Preventing a system from providing service   | Availability       |
| Elevation of<br>Privilege | Doing things that one isn't suppose to do    | Least Privilege    |



|                        | HOW TO CONTROL                                                                                                                                                                                                                                          |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPOOFING               | Authentication based on key exchange Decide on single-factor, two-factor, or multi-factor authentication Offload authentication to another provider Restrict authentication to certain IP ranges or locations                                           |
| TAMPERING              | Data protected from tampering with cryptographic integrity mechanisms Only enumerated authorized users may modify data                                                                                                                                  |
| REPUDIATION            | Maintain logs Digital signature                                                                                                                                                                                                                         |
| INFORMATION DISCLOSURE | Data in files / database will only be available to authorized users  Name / existence of database will only be exposed to authorized users  Content and existence of communication between Alice and Bob will only be exposed to these authorized users |
| DENIAL OF SERVICE      | Rate limiting or throttling access to a service<br>Real-time monitoring of log files and other resources to note sudden changes                                                                                                                         |
| ELEVATION OF PRIVILEGE | System has a central authorization engine Authorization controls stored with item being controlled using ACLs System limits who can write data to higher integrity level System uses roles / accounts or permissions to manage access                   |

### Threat table – current status

|     | External entity                             | External entity                           | Link            | Link                          | Compone<br>nt   | Compon<br>ent       |
|-----|---------------------------------------------|-------------------------------------------|-----------------|-------------------------------|-----------------|---------------------|
| TB1 | Mitigations:<br>What controls<br>are there? | Vulnerabilities:<br>What can go<br>wrong? | Mitigati<br>ons | Vulnerabilities               | Mitigation<br>s | Vulnerabi<br>lities |
| S   | Firewall                                    | V1. No checking of data source            | TCP/IP          | V1. Unencrypted communication |                 |                     |
| T   |                                             |                                           |                 |                               |                 |                     |
| R   |                                             |                                           |                 |                               |                 |                     |
| I   |                                             |                                           |                 |                               |                 |                     |
| D   |                                             |                                           |                 |                               |                 |                     |
| Е   |                                             |                                           |                 |                               |                 |                     |

## Threat found:

| RISK            | HIGH?                                                                                             |
|-----------------|---------------------------------------------------------------------------------------------------|
| THREAT          | There is no data source check on a firewall, the data could be spoofed or tampered by an attacker |
| IMPACT          | Incorrect data in the system                                                                      |
| COUNTER MEASURE | IP RANGE of CUSTOMERS                                                                             |
| COMPONENT       | FIREWALL                                                                                          |

| RISK            | HIGH?                                                                                                   |
|-----------------|---------------------------------------------------------------------------------------------------------|
| THREAT          | There is encryption in the communication protocol, the data could be spoofed or tampered by an attacker |
| IMPACT          | Incorrect data in the system                                                                            |
| COUNTER MEASURE | ENCRYPT                                                                                                 |
| COMPONENT       | COMMUNICATION<br>PROTOCOL                                                                               |

## Example threat list

| 95 threats found                                 |    |  |
|--------------------------------------------------|----|--|
| <ul><li>3rd party (data providers)</li></ul>     | 8  |  |
| <ul><li>3rd party API (data consumers)</li></ul> | 8  |  |
| Azure Data Lake Storage                          | 7  |  |
| ▶ ○ Firewall                                     | 2  |  |
| ▶ ○ IIoT Gateway                                 | 33 |  |
| ▶                                                | 4  |  |
| ▶ ○ Sensor                                       | 5  |  |
| ▶ ○ SQL Client                                   | 5  |  |
| ▶ ○ SQL Client                                   | 10 |  |
| ▶ ○ SQL Database                                 | 8  |  |
| ▶ ○ Web UI                                       | 5  |  |

## Mitigations

- 1. Leave as-is
- 2. Remove from product
- 3. Remedy with technology countermeasure
- 4. Warn user

#### Evaluate risks

- Ease of exploitation
- Business impact
- High, medium, low

## Ease of exploitation

| Risk Rating | Description                                                                                                                                                                                                                                                                            |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High        | <ul> <li>Tools and exploits are readily available on the Internet or other locations</li> <li>Exploitation requires no specialized knowledge of the system and little or no programming skills</li> <li>Anonymous users can exploit the issue</li> </ul>                               |
| Medium      | <ul> <li>Tools and exploits are available but need to be modified to work successfully</li> <li>Exploitation requires basic knowledge of the system and may require some programming skills</li> <li>User-level access may be a pre-condition</li> </ul>                               |
| Low         | <ul> <li>Working tools or exploits are not readily available</li> <li>Exploitation requires in-depth knowledge of the system and/or may require strong programming skills</li> <li>User-level (or perhaps higher privilege) access may be one of a number of pre-conditions</li> </ul> |

## Business impact

| Risk Rating | Description                                                                                                                                                                                                                                                                                                                                                              |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High        | <ul> <li>Administrator-level access (for arbitrary code execution through privilege escalation for instance) or disclosure of sensitive information</li> <li>Depending on the criticality of the system, some denial-of-service issues are considered high impact</li> <li>All or significant number of users affected</li> <li>Impact to brand or reputation</li> </ul> |
| Medium      | <ul> <li>User-level access with no disclosure of sensitive information</li> <li>Depending on the criticality of the system, some denial-of-service issues are considered medium impact</li> </ul>                                                                                                                                                                        |
| Low         | <ul> <li>Disclosure of non-sensitive information, such as configuration details that may assist an attacker</li> <li>Failure to adhere to recommended best practices (which does not result in an immediately visible exploit) also falls into this bracket</li> <li>Low number of user affected</li> </ul>                                                              |

#### Practice

- Draw DFD Level 1 (component diagram)
- Identify trust boundaries
- Select 1 trust boundary to do STRIDE analysis for external entity, process and communication link (so you will have 3X6 situations).
- Specify the threats of this trust boundary (at least 10 of them)
- Evaluate risks for each threat ease of exploitation and business impact
- Specify mitigations for the 3 highest risks

## Start today!

- Start with secure design as goal
  - Ask the "what if" questions
    - Understand bigger picture

#### Useful links

- <a href="https://github.com/hysnsec/awesome-threat-modelling?tab=readme-ov-file">https://github.com/hysnsec/awesome-threat-modelling?tab=readme-ov-file</a>
- OWASP Threat modeling manifesto
- https://cheatsheetseries.owasp.org/cheatsheets/Threat\_Modeling\_Cheat \_Sheet.html
- https://safecode.org/
- https://ieeecs-media.computer.org/media/technicalactivities/CYBSI/docs/Top-10-Flaws.pdf
- https://github.com/rhurlbut/CodeMash2019/blob/master/Robert-Hurlbut-CodeMash2019-Threat-Modeling-Workshop-20190108.pdf
- https://www.toreon.com/threatmodeling/

## END of this workshop

But how do I do it in practice?

Sirris is working on a startup kit,

To help you initiate TM process in your company

And review of TM tools.